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Abstract

How to extend the use of value-based strategy models to situations with large quasi-

rents shared among multiple actors, such as ecosystems? How to consider how players

understand competition in value-based models? How to overcome some limitations

of these models such as lack of uniqueness of solutions? In this paper, we extend the

reach of value-based strategy by revisiting the celebrated biform games model to answer

these questions. Operationally, we make players evaluate their payoff from the cooper-

ative stage of the game according to a generalized expectation over their value capture.

Our solution has several advantages: (i) It subsumes the original biform framework

and seamlessly integrates recent works providing bounds to value capture (ii) It allows

solving issues such as the possible non-uniqueness of solutions and invariance to the

competitive environment structure while maintaining the role of competition in deter-

mining value capture (iii) It remains axiomatically justified on behavioral grounds (iv)

It permits richer preferences representations that, for example, can include subjective

distortions of objective chances of value capture (v) It further leads the way to the use

of generalized preference representations in the value-based framework.
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1 Introduction

The study of the relations between value creation and value capture and their implications on

firms’ behavior is central to the modern analysis of competitive strategy. These treatments

have their theoretical bases in the seminal work of Brandenburger and Stuart (1996; 2007)

which structure the problem of value creation and appropriation in an hybrid game theory

setup. In particular, Brandenburger and Stuart (2007) propose a procedure for evaluating

multistage games which have a non-cooperative stage followed by a cooperative stage (biform

games). Their procedure prescribes that every player backward inducts his payoff from the

cooperative stage and evaluates it as a convex combination of the extremes of that player’s

coordinate projection on the core (Gillies, 1953), the intervals of value capture considered

in their work. In other words, they posit that players equate the value of each cooperative

stage sub-game to the weighted combination of the maximum and minimum outcome that

a player can obtain in the core of each sub-game.

This work takes the hybrid noncooperative-cooperative biform game setup of Branden-

burger and Stuart (2007) and enriches its structure. Our technical generalization allows

not only to access the use of different payoff evaluation criteria that are able to represent a

variety of behavioral attitudes, but also for the embedding of uncertainty. In particular, we

explore the implications of using an evaluation criterion that features an additional element

with respect to that in Brandenburger and Stuart (2007): the expected value that a given

player can capture in the cooperative game. This expectation is assessed by the player by

considering the relative frequency with which a given allocation is assigned to him, among

those possible, conditional on the full competitive structure of the cooperative game that is

played. From a strategic management viewpoint, this formulation, that embeds as a special

case the original biform games’ structure, allows to incorporate the effects of business strate-

gies on the shape of the competitive environment while leaving unconstrained the free-form

competition that characterizes the cooperative stage of the game.

Finally, in line with the stream of research that suggests the use of alternatives to the core,

the setup we propose is a framework that allows for the use of different solution concepts. In

fact, the issue of how to evaluate of the cooperative-stage payoffs is conceptually separated
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from the one of which cooperative-stage payoffs to evaluate. Most of the analysis that

we will carry out in the present paper is developed with a focus on the use of the core.

However, we do not take a normative stance as to which solution concept to prescribe since

its adequacy depends upon the assumptions that players are required to satisfy in a given

strategic situation, as we will further discuss.

2 Background and Positioning

Recent work in strategic management considers the use of alternative solution concepts for

the cooperative stage of biform games (Gans and Ryall, 2017; Ross, 2018) and their relative

advantages and disadvantages with respect to the one proposed by Brandenburger and Stuart

(2007), who focus on the core.

One of the main critiques to the use of the core in value-based business strategy relates to

its possible non-existence. Dealing with this issue has been the focus of analysis of a series of

papers that studied either different intervals of value appropriability (MacDonald and Ryall,

2004; 2018; Montez et al, 2017) or general conditions for the existence of the core in classes

of games of particular interest to strategy scholars (Chatain and Zemsky, 2007; Stuart, 1997;

2004). Relative to the issue of non-uniqueness of the equilibrium, which is salient for the

core, Ross (2018) proposes, for multi-player settings, the use of alternative point solutions,

most notably the Shapley value (Shapley, 1962; Gale and Shapley; 1953) and the nucleolus

(Schmeidler, 1969). Yet, putting aside the computational burden that they entail, these

point solutions have features that may be undesirable in a strategic management setting.

For instance, the Shapley value may not abide to minimal requirements of rationality in

strategic thinking for large classes of games as it may allocate value to some players while

others would have the ability to block them from capturing it, whereas the nucleolus can be

interpreted as a “pessimistic” point solution.1

The use of these point solutions has also often been the answer to the problem of non-

existence of the core, where a single-valued solution is proposed as an alternative to the
1The structure of the nucleolus solution is indeed reminiscent of the max-min criterion axiomatized in

Gilboa and Schmeidler (1989).
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use of the core when the latter is empty. As we argue more at length in Section 5.1, we

remark that emptiness of the core is equivalent to the impossibility of allocations to satisfy

a number of strategic reasoning requirements. Taking stock of this observation, we illustrate

other solution concepts that are closer in spirit to the core and their relationship with it.

Another set of issues comes from the approach taken by Brandenburger and Stuart (2007),

who provide a point solution to the problem of evaluating cooperative-stage payoffs when

the core does not provide a unique allocation. This is one of the main virtues of their

apparatus but it comes at a cost. Indeed, the use of a convex combination of the extremes

of core projections, as already noted by the authors themselves (Brandenburger and Stuart,

2007: Appendix B.ii), implies that a player doesn’t distinguish between two cores that yield

the same projection for that player. This feature of the original biform games setup can be

problematic in some applied contexts where very different strategic situations can give rise to

similar core projections, although intuition suggests that a reasonable decision maker should

not be indifferent between these situations.

This is, for example, the case in business ecosystems where value can be created as the

result of complementarities between several types of players, all necessary to value creation.

To fix ideas, let us consider a situation in which three types of players are necessary for

value creation (e.g. hardware manufacturers, operating systems, and application software)

and that there is only one player of each kind. Each player’s added value is equal to the

total value created and the projection of the core for each player is an interval between zero

and the total value of the game. In the classic Brandenburger and Stuart (2007) framework,

each player evaluates this as a combination of the best and worst points in that interval, not

necessarily egalitarian. Now, assume that a new hardware manufacturer enters the game,

and is a perfect substitute (clone) to the one already in the game. Obviously, value captured

by the hardware manufacturers drops to zero due to competition. However, in this new

game, the upper and lower bounds for value appropriation of the operating system and

the application software remain similar to those in the original game and, according to the

classic framework, their envisaged value capture should remain the same. Yet, before entry,

the full value had to be split three ways, while after entry, it only has to be split between

two players who, intuitively, would probably prefer the second game to the first. This is
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because while the projection of the core does not change for each of these two players,

the geometry of the set of core allocations is different in the second game, and arguably

more favorable to them, as it now assigns zero value capture to the manufacturers while

initially the unique manufacturer could appropriate a wide range of value. This highlights a

substantial problem for the applicability of the classic biform games framework in modeling

such situation: it seems impossible to recognize the effect of the time-honored strategy of

commoditizing complementors in ecosystems in order to capture more value. Conceptually,

this example suggests that it may be useful to base the evaluation of value capture on the

full set of value capture possibilities across all players, rather than just on the projection of

these along one single axis.

In this paper we aim at addressing the issues raised above. In particular, we propose a

generalization of the biform games of Brandenburger and Stuart (2007) which embeds richer

implications of the structure of the competition on the chances of appropriation of value

for each player. Operationally, this translates into players evaluating their payoff from the

cooperative stage of the game by an expected value of their value capture that takes into

account the full structure of the constraints on value capture, in addition to the upper and

lower bounds on value capture.

For set-valued solution concepts, this evaluation can be decomposed into two fundamental

constituents. The first one is objective and is given by the expected value of the interval of

value capture, where the probability of each possible value captured by a player is given by

the objective chances that such value is allocated to the player, given the structure of the

game. In other words, each player, when considering the range of possible values that he

can capture when joining a coalition, weighs these values by the relative share of allocations

that assign such value to him. The other component instead allows to incorporate subjective

distortions of such objective expected value by incorporating subjective weights over the

lower and the upper bounds of value appropriation.

To this end, we provide an extended definition of biform games, in which we replace

the original confidence index based evaluation criterion of Brandenburger and Stuart (2007)

with a more general preference relation over payoffs,2 that is also backward compatible with
2We observe that our approach is different from that of Agastya (1996), where the problem studied is
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the latter seminal biform games criterion. Relatedly, our embedding of a generic structure of

preferences in the biform game definition leads the way to the use of richer payoff evaluation

criteria, as advocated by Gans and Ryall (2017).

Our solution has several advantages. First, it embeds the biform games’ structure of

Brandenburger and Stuart (2007) as a special case, and thus preserves all of their results

when we restrict to their framework. In addition, our formal structure allows to consider more

general sets of outcomes, that do not necessarily coincide with the core. In particular, we

can apply our results to the recent developments in the value-based strategy literature that

focused on the implications of different strategic requirements on intervals of value capture

(MacDonald and Ryall, 2004; Montez, Ruiz-Aliseda, and Ryall, 2017). Finally, considering

more general outcome sets makes it possible to reconcile the use of a point-selection from a

set of constraints on value capture with the use of the Shapley value, under an overarching

setup which frames both choices as special cases of a unified evaluation criterion. Finally,

different strategic constraints on the solution set can further be interpreted as different limits

to strategic cognition — more elaborate cognitive capacities correspond to more requirements

and constraints. Specifically, this helps translating explicitly the impact of bounded cognition

in strategic reasoning over value creation into different perceived intervals of value capture.

The setup presented in this paper is therefore very flexible and can be tuned to study a

variety of meaningful situations. In what follows, we will focus on the case that corresponds

to assigning equal chances to allocations that are solutions of the cooperative stage game, as

this assumption naturally descends from the use of set valued solution concepts like the core.

However, as we will discuss later, our setup allows for the use of more general assumptions

on the probabilistic structure imposed on the set of allocations. This work thus represents

only a first step in the direction of analyzing the implications of using a richer, yet still

parsimonious, structure in biform games.

that of choice under uncertainty between bargaining situations.
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3 Examples

The following examples illustrate how the use of a refined evaluation criterion for the coop-

erative stage leads the way to novel behavioral insights together with an embedding of the

effects of competition on strategic choices.

Example 1. “Invariance to the competitive structure: Wide cores are not equivalent”

We reformulate and elaborate on the example developed in the introduction. Let’s con-

sider a status-quo cooperative game in which there are three players: a supplier of operating

system A, an hardware manufacturer B, and a developer of application software C. All

together they can create a total value of $3, but no value can be created by any other subset

of players. This status-quo game has non-empty core and each player has the same added

value, which is equal to $3. Hence, the lower bound on value creation for each player is $0

while the upper bound is $3.

Let us now assume that the operating system provider A can help another hardware

manufacturer D entering the game at no extra cost. This case corresponds to a different

coalitional game. Let us assume that this game is such that the total value created does

not vary as the hardware clone joins the coalition of all players. Now all coalitions that are

composed by the operating system, one or two hardware manufacturer, and the application

software developer produce a total value of $3 while all other coalitions create no value. In the

core of this game, the operating system can capture value between $0 and $3, the application

software developer can capture between $0 and $3, and the manufacturers (original and clone)

capture $0, as they are identical and have no added value individually.

From the view point of the operating system provider, the upper and lower bounds on

value capture in the new game are identical to those in the status-quo game. Following

Brandenburger and Stuart (2007), this implies that, for fixed confidence indices, the man-

ufacturer should be indifferent between helping or not helping the clones enter the market.

Yet, in the standard biform games’ setup no direction is given regarding the determinants

of the confidence index. In particular, it does not need to vary with the shape of the core.

The simple but crucial observation in this case is that, although the range of possible

values that the manufacturer can capture in this game did not change, there is a change in
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what can be seen as the manufacturer’s objective chances of value appropriation. This con-

sideration can be translated here by computing the expected allocation vector for all players

(that, as we will remark, corresponds to the core-center of the status-quo game), which pre-

scribes that on average a value of $1 is allocated to each player. Therefore, according to

expected value reasoning, the operating system provider foresees to appropriate, on average,

a value of $1 in the status quo game.

In the new coalitional game, only two players, namely the manufacturer and the buyer,

can appropriate positive value since they are the only two players whose added value is non-

zero. This implies that, after the clone enters the market, value will be shared among fewer

players. In this case, the operating system’s expected value capture increases from $1 to $3
2
,

making the action of helping the entrance of additional suppliers in the market preferred to

the status-quo, from the manufacturer’s point of view, in accordance with intuitive reasoning.

�

Bringing in substitutes to complementors (or commoditizing) is a widespread strategy in

ecosystems. Yet, the classic framework cannot always capture the rationale for this strategy.

Our simple example shows how expected allocation considerations help embedding consid-

erations about the competitive structure of the game also in those cases in which they do

not imply differences in the intervals of value capture for some players in different coalitional

games. We finally remark that, in this case, the Shapley value of the 4-players game would

give some strictly positive value is allocated to the hardware manufacturers notwithstanding

the fact that their added value is null.

The next example is given to illustrate the possibility of disentangling an objective com-

ponent of the evaluation of the cooperative stage payoffs from a subjective one, that is

determined by confidence considerations. Abstracting from behavioral arguments, the fol-

lowing example shows that our solution also addresses critiques related to the set-valued

nature of the core.

Example 2. “A behavioral twist on Brandenburger and Stuart (2007)”

Let us revisit the biform analysis of the “branded ingredient” strategy in Brandenburger

and Stuart (2007). In this game, there are two firms such that each can produce a single unit
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of a given product. In the economy, there is also only one supplier that can supply the input

to at most one firm, and the cost of this necessary input is $1. Finally, there are numerous

buyers, each demanding at most one unit of product, from either of the two firms. Buyers

all have the same tastes but the value that they attach to the product is firm-specific. This

situation describes, for example, the case in which two firms produce the same product but

in different qualities. It is assumed that buyers are willing to pay up to $9 for the product

sold by Firm 1 and up to $3 for the product sold by Firm 2. It is further assumed that the

supplier has the option of incurring an upfront cost of $1 to increase the buyers’ willingness

to pay for Firm 2’s product up to $7, by branding the product of Firm 2. This situation can

be modeled as a biform game in which the supplier is the only player who can move in the

(non-cooperative) first-stage of the game and can choose whether or not to incur the upfront

cost for branding the product of Firm 2.

It is easy to observe that, in both second-stage (cooperative) games, the buyers and Firm

2 have zero added value. If we focus on the use of the core as a solution concept for our

cooperative sub-games, then this prescribes that neither the buyers nor Firm 2 is ever able

to appropriate positive value. The situation is different for Firm 1 and the supplier: in the

status-quo sub-game, Firm 1 can appropriate value in a range that goes from a minimum

of $0 up to a maximum of $6 while the supplier can appropriate value in a range that goes

from a minimum of $2 to a maximum of $8. Whereas, in the branded-ingredient sub-game,

Firm 1 can appropriate value in a range that goes from a minimum of $0 up to a maximum

of $2 and the supplier can appropriate value in a range that goes from a minimum of $5 to

a maximum of $7.

Although the supplier can secure at least $2 in the status-quo game and $5 in the branded

ingredient strategy, the relative preference for one strategy over the other is completely

determined, in Brandenburger and Stuart (2007), by the players’ confidence indices and

nothing can be said ex-ante. On the sole basis of payoffs intervals, similar considerations

apply to Firm 1, if one is not to invoke exogenous bargaining power arguments which may

not, however, always apply to multilateral bargaining settings.3

3Previous work using biform games, starting with Chatain and Zemsky (2008) have interpreted the αi

coefficient as an indicator of bargaining power, notably between buyers (e.g. endowed with αi = α bargaining
strength) and suppliers (with αi = 1−α bargaining strength). This interpretation has the advantage of fitting
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Reasoning in terms of expected appropriation within the core, instead, offers us a way

out of this indeterminacy, given that in the status-quo sub-game, the average allocation in

the core is $5 for the supplier and $3 for Firm 1, whereas, in the branded strategy sub-game,

the supplier obtains on average $6, whereas Firm 1 is allocated $1, on average. �

4 Formal definitions and preliminaries

In this section we lay out the mathematical structures and definitions that we will use

throughout the paper. Let us start by considering a multi-stage game where the first-stage

is a simultaneous-moves game while the second-stage is a cooperative transferable-utility

game. All the definitions below can be extended to the case where there is a multiplicity of

non-cooperative stages before the last, cooperative, stage.

4.1 Formal definitions of games

A simultaneous-moves game is represented by the tuple

G = 〈I, Y, (Ai)i∈I , g, (vi)i∈I〉

where

• I = {i, i = 1, ...n} is the set of players. For every player i ∈ I, we denote by −i all the

other players except i;

• Ai is the nonempty set of actions for player i ∈ I. We denote by ai ∈ Ai the generic

action of player i, hence A = Ai×A−i denotes the set of available actions and elements

of A are arrays a = (ai, a−i);

with notions of bargaining power used in classic strategy frameworks of industry analysis, and especially
Porter’s five forces (Porter, 1980). However, this interpretation, while adequate in bilateral negotiations
environments, loses its bite in situations when bargaining over value involves more than two sides at the
same time.
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• g : ×i∈IAi → Y is the consequence function, which maps action profiles into con-

sequences g(a) ∈ Y and captures the essence of the rules of the game, beyond the

assumption of simultaneous moves;

• vi : Y → R is the von Neumann-Morgenstern utility function of player i.

From the consequence function g and the utility function vi of player i, we obtain a function

that assigns to each a = (aj)j∈I the utility vi(g(a)) for player i of consequence g(a). This

function

ui = vi ◦ g : ×i∈IAi → R

is called the payoff function of player i.

In order to make explicit the dependence of the second stage game upon the action profile

chosen at the first stage we introduce a notion of conditional cooperative game.

A conditional4 transferable utility (TU) cooperative game evaluated in the action profile

a is a pair

G|a = 〈I,Wa〉

where Wa : 2I → R is the characteristic function of the conditional TU game. It is defined

as the section at a of the function W : 2I × A → R that assigns to every coalition C ⊆ I

and action profile a ∈ A its worth W (C, a). By convention, we set W (∅, a) = 0 for all a ∈ A

and we assume that W ({i} , a) = W ({i} , a′) for all a, a′ ∈ A. Finally, we denote by Gn the

set of n-player (conditional) TU games.

We say that a conditional TU game G|a is zero-normalized if and only if Wa ({i}) = 0

for each i ∈ I. Whereas, a conditional TU game G|a is superadditive if and only if, for all

S, T ⊆ I it holds that Wa (S) + Wa (T ) ≤ Wa (S ∪ T ) and it is convex if and only if, for all

S, T ⊆ I it holds that Wa (S) +Wa (T ) ≤ Wa (S ∪ T ) +Wa (S ∩ T ).

We are now ready to give the definition of our class of biform games.
4Although this terminology is not used in Brandenburger and Stuart (2007), there is no conceptual

difference between the second stage cooperative games considered in their work and those studied here.
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Definition 1. A generalized biform game is a tuple

Γ =
〈
I, (Ai)i∈I , (%

∗
i )i∈I , V

〉
where

• I = {i : i = 1, ..., n} is a set of players;

• Ai is the nonempty set of possible actions for player i ∈ I;

• %∗i denotes player i’s preference relation over (cooperative-stage) outcomes;

• V : A → R2I is the value function of the biform game and assigns, to every action

profile a ∈ A the value of every coalition C ⊆ I in the cooperative stage of the game.

The value function of the biform game allows to link the non-cooperative stage with the

cooperative stage of the game as follows: for every C ⊆ I, we set V (a)(C) = W (C, a), and

therefore V (a) corresponds to Wa, that is the section at a of the characteristic function of

the conditional TU game G|a.

4.2 Value Creation and Allocations of Value

The value created in the conditional cooperative stage game is distributed among the players.

A distribution of value (allocation) for the conditional game G|a ∈ Gn is a profile πa =(
πaj
)
j∈C ∈ Rn

+ where πaj is a real number indicating the amount of value captured by agent j in

return for his participation in the value-creating activities that contribute to the production

of Wa(C), the value created by coalition C in the conditional game G|a. In particular,

Wa ({i}) denotes the value that player i can create on his own.

The added value of player i to a coalition C is defined as

avi(C; a) := Wa (C)−Wa (C \ {i})

that is the difference between the value that the coalition C can create when i belongs to

the coalition and the value that the coalition C can create when i does not belong to the
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coalition, when action profile a is chosen (in the non-cooperative stage).

Allocation can be characterized by properties with respect to how the value created is

distributed among the players. In particular, we say that an allocation πa is efficient (or

feasible in Gans and Ryall, 2017) if
∑

i∈I π
a
i = Wa (I), i.e. if all the value created by the

full set of players is distributed among the players of the game; πa is individually rational

if, for each i ∈ I, πai ≥ Wa ({i}), i.e. if each player is allocated at least the value that he

could create on his own; whereas πa is coalitionally rational if, for every non-empty coalition

C ⊆ I,
∑

i∈C πi ≥ Wa ({i}).5 Relatedly, the imputation set of G|a ∈ Gn is the set of all

efficient and individually rational allocations for the conditional game G|a ∈ Gn, i.e.

I(a) :=

{
πa ∈ Rn :

∑
i∈I

πai = Wa (I) , and for each i ∈ I, πai ≥ Wa ({i})

}

and the elements πa ∈ I(a) are called imputations. Instead, we will refer to the set of efficient

allocations for a conditional game G|a ∈ Gn as the pre-imputation set of G|a. Geometrically,

the imputation set of a zero-normalized coalitional n-player game can be represented, w.l.o.g.,

by an (n− 1)-dimensional standard simplex.6 Since the techniques we develop here rely on

properties of simplices, in what follows we will focus mainly on allocations that are non-

negative and efficient. However, as we discuss later on, this fact does not constitutes a

limitation to our framework due to the possibility of re-normalizing payoffs in conditional

games, as already noted in Brandenburger and Stuart (2007) and Chatain and Zemsky

(2011), respectively.

Finally, we consider basic monotonicity properties of allocations that will be useful in

order to characterize outcome sets of the cooperative-stage game. Let πa, ρa be allocations

and let S j I be a nonempty coalition. We say that πa dominates ρa via S if πai > ρai for

all i ∈ S and
∑

i∈S π
a
i < Wa(S) and we say that πa dominates ρa if there is an S ⊂ I such

that πa dominates ρa via S. For an imputation πa, let Dom(πa) be the set of imputations
5Note that Gans and Ryall (2017) refer to coalitional rationality as competitive consistency (or stability)

condition. Competitive consistency trivially implies individual rationality.
6The m-dimensional standard simplex ∆m is the convex envelope of the canonical base e1, ..., em+1 of

Rn+1. That is, ∆m =
{

(x1, ..., xm+1) ∈ Rm+1 :
∑m+1

i=1 xi = 1, xi ≥ 0 ∀i
}
. Note that ∆m is a regular simplex,

i.e. a simplex such that the distance between any two of its vertices is constant.
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dominated by πa, and for a set of imputations K j I(a), let Dom(K) =
⋃
πa∈K Dom(πa)

be the set of imputations which are dominated by at least one imputation in K.

4.3 Value Capture and Probabilistic Solutions

Let us denote by χi (C; a) the interval of value capture (or appropriability interval) for player

i ∈ I, that is, the set of values πai that player i can capture when coalition C is formed and

the action profile a has been played in the non-cooperative stage. Further denote by I+ the

set of players such that χi (C; a) 6= {0} for all i ∈ I+ ⊆ I. Different strategic requirements

have different implications on the definition of χi (C; a).

For example, it is well known that, under regularity conditions,7 individual rationality

and efficiency imply Wa ({i}) ≤ πai ≤ avi(C; a). Hence, minimal strategic requirements

suggest the definition of the following candidate interval of value capture:

χ0
i (I; a) = [Wa ({i}) , avi(I; a)]

and we refer to it as the added value capture interval of player i ∈ I.8

Arguably, the most commonly used type of interval of value capture in value based

business strategy is given by the projections onto the i-th coordinate axis of the core of the

conditional cooperative games. We recall that the core of a conditional TU game is the set

of imputations that are coalitionally rational, that is

C (G|a) =

{
πa ∈ Rn :

∑
i∈I

πai = Wa (I) , and for every ∅ 6= C ⊆ I,
∑
i∈C

πai ≥ Wa (C)

}
.

Then we can denote the resulting interval of core value capture by

χ∞i (I; a) = proji {C (G|a)} .
7In particular, let G|a ∈ Gn be a zero-normalized conditional TU game such that avi(I; a) ≥ 0 for all

i ∈ I.
8Building on the logic underlying the added value principle, other relevant examples of bounds can be

found, among others, in Tijs (1981), MacDonald and Ryall (2004) and Montez et al. (2017). As anticipated
in the introduction, we can extend our analysis to the use of these bounds.
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Yet, the core is only one instance of solution concept for cooperative games. A proba-

bilistic solution concept ψ is a function which, given a TU game in Gn, selects a probability

distribution over Rn, i.e.

ψ : Gn → ∆ (Rn)

G 7→ ψ(G)

and we denote by ψ (G|a) the probabilistic solution set of the conditional n-players TU game

G|a. Given a conditional TU game G|a ∈ Gn, if an allocation πa ∈ Rn belongs to the support

of ψ (G|a) then we say that πa is a solution of the conditional game G|a and we denote it

by πa∗ .

At this point, we make the key conceptual move of remarking that any set of allocations

that are solutions of a given TU game in Gn, can be identified with the uniform distribution

defined over the set itself. Building on this intuition, we observe that we can identify alloca-

tions with n-dimensional vectors of real-valued random variables9. Accordingly, we denote

by Πa
i the random allocation of value to player i ∈ I in the conditional game G|a ∈ Gn and

by Πa = (Πa
1, . . . ,Π

a
n) the corresponding random allocation vector.

4.4 Evaluation of Generalized Biform Games

We now impose assumptions on players’ preferences such that players evaluate outcomes of

the cooperative stage game by a convex combination of three elements: the maximum and

the minimum possible payoffs prescribed by the interval implied by the solution concept

chosen (usually the core) and a third term that represents the value that, on average, can be

allocated to the player in the conditional game. This latter term synthesizes one of the main

novelties of our setup with respect to the seminal biform games framework: by embedding

a probability distribution over the set of solution allocations, we allow the framework to

capture more implications of the competitive structure on the possibilities of value capture

of the players, while maintaining backward compatibility with the Brandenburger and Stuart

(2007) framework.
9We recall that, given a probability space (Ω,Σ, P ) and the measurable space (R,B), a real-valued random

variable X is a measurable function X : Ω→ R.
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Formally, let χi(I; a) be the appropriability interval of player i ∈ I in the conditional

game G|a. Then

ui(χi(I; a)) := γi min χi(I; a) + (1− γi − δi)E [χi(I; a)] + δi max χi(I; a) (4.1)

where γi and δi are two non-negative real numbers such that γi + δi ∈ [0, 1), E [χi(I; a)]

denotes10 the expected value of the allocation to player i ∈ I within the interval of value

capture χi(I; a), where expectation is taken with respect to the objective chances of appro-

priation of each conceivable value to player i and minχi(I; a) and maxχi(I; a) denote the

minimum and the maximum of the interval of value capture χi (I; a). Essentially, E [χi(I; a)]

represents the expected value capture over the set of possible allocations across all players,

and γi + δi ∈ [0, 1] the indices representing respectively the subjective weight given to the

most pessimistic outcome (γi) and the subjective weight given to the most optimistic out-

come (δi) while (1− γi− δi) is the weight given to the more objective probabilistic outcome.

Together, they allow to flexibly represent different levels of overconfidence (high δi), under-

confidence (high γi), while accounting for the full geometry of the set of possible allocations

(E [χi(I; a)]). Whenever the player evaluates χi(I; a) according to (4.1) we say that it does

so by considering its generalized expected appropriation.

This suggests another feature of our solution: the observation of deviations from “ob-

jective” (i.e. frequentist) expected appropriation reasoning can be immediately related with

over- or under-confidence considerations. In other words, expected allocation reasoning pro-

vides the possibility of isolating an objective component of the players’ assessment of the

value of a coalition, which is computed by considering the relative frequency with which any

give value is allocated to a player, from a subjective component, which embeds subjective

distortions of appropriation chances.

It is immediate to observe how this representation includes as a limit case the one of Bran-

denburger and Stuart (2007). Specifically, in the present work, we assume that preferences
10We use this notation instead of the more precise E [Πa

i |Πa] with Πa (ω) ∈ R, for all ω ∈ Ω, where R
is a generic set of restrictions on players’ allocations that embeds the assumptions for the problem under
analysis. Although improper, we choose this notation for simplicity and ease of interpretation.
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over cooperative-stage outcomes are represented by the Non-Extreme Outcomes Expected

Utility (NEO-EU) criterion of Webb and Zank (2011) with linear utility.

We remark that, although we do not pursue this direction here, our definition of general-

ized biform games further allows for the embedding of more general preference structures on

the set of outcomes of the cooperative stage game. In this context, both this criterion and

the one used by Brandenburger and Stuart (2007) can be seen as special cases of preference

representations.11 In fact, the latter can be seen as the requirement that %∗ be represented

by the Hurwicz (1951) criterion12 over the core outcomes, that is, by a convex combination

of the extremes of the projections of the core, for every player.

This suggests another feature of our setup: in what follows we will posit that the evalu-

ation of the cooperative stage payoffs entails some form of expected value reasoning.13 This

will imply the set of solution concepts be coherent with this assumption, which is compatible

with a wide array of choices, as we will illustrate further along. However, this is a conse-

quence of the axiomatic system imposed upon the preference relation %∗ which, we note,

can be made compatible with non-expected value reasoning-based solution concepts such as,

for example, the nucleulous.

As implemented in the present paper, our framework thus generalizes Brandenburger

and Stuart (2007) in two main directions: (1) we consider all outcomes in a value capture

interval together with their chances of appropriation and (2) we allow for cooperative-stage

solution sets that do not necessarily coincide with the core. In fact, at this level of generality,

our framework is silent with respect to the solution concept to be adopted in the cooperative

stage of the biform game. This allows the present setup be compatible also with the use of
11In mathematics, a representation theorem is a theorem that states that every abstract structure with

certain properties is isomorphic to another (abstract or concrete) structure. One of the cores of decision
theory concerns the representation of preference relations % and studies behavioral conditions for observable
preference relations to be equivalent to decision makers choosing as if they are maximizing functionals such
as, for example, the one in (4.1).

12Hurwicz’s (1951) criterion evaluates future outcomes under uncertainty by giving a weight to the worst-
case scenario and the complement to the best-case scenario.

13The Hurwicz criterion can, in fact, be seen as a degenerate form of expectation. Axiom-wise, the main
difference between the Hurwicz Expected Utility and the NEO-EU criterion is that, while the first one
requires a form of exchangeability over a specific type of events, the latter requires the preference relation
to satisfy forms of consistency on the evaluation of the most and least preferred outcomes in lotteries when
probability shifts are involved. For more details, we refer the interested reader to Gul and Pesendorfer (2015)
and Webb and Zank (2011).
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recent developments in the theory of value-based strategy, such as the refinements of intervals

of value capture based on different notions of competitive intensity in Montez, Ruiz-Aliseda,

and Ryall (2017).

5 Expected allocations

Technically, the simple but crucial step that we take here is to endow the solution set with

a probability distribution. This grants us the possibility of considering not only extreme

feasible values, but also the full range of possible solutions for each player, together with the

shape of the solution set. Hence, this evaluation reflects more fully how competition restricts

value capture in the game.

We depart from Brandenburger and Stuart (2007) and assume that each player evaluates

his appropriability range by his (generalized) expected appropriation, instead of a convex

combination of the extremes of the value capture range, which coincides, for every player,

with his coordinate projection of the solution set. As already remarked, the solution concept

they adopted is the core, but this is not a necessity in our setup.

When we focus on non-negative efficient allocations, the analysis of allocation of value

of n-players conditional TU games immediately translates to that of subsets of regular sim-

plices with side length equal to the total value created by the grand coalition of players in the

conditional game. In this case, a natural candidate for endowing the solution set with a prob-

ability distribution is the use of a (continuous) uniform distribution over regular simplices,

although other choices are possible. This assumption, that we will maintain throughout this

paper, formalizes the idea that, ex-ante, all allocations in the simplex are equally possible.

Given our hypotheses, the coordinates of the simplex are jointly distributed according to a

Dirichlet with dispersion parameter equal to 1 for all i ∈ I. The specific choice of solution

concept, in turn, induces different probabilities over the set of allocations of value created,

by restricting its support.

The generalized expected appropriation comprises of two main terms: the first one is

an expectation of the value capture, computed with respect to a frequentist probability

distribution, the other term represents a relative (upward or downward) distortion of this
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value. This decomposition allows to neatly separate the objective assessment of chances

of value capture, which are represented by the expected value term, from the subjective

assessment of these chances, which are reflected by the evaluation weights that players place

on the extreme values of their value capture range. The expectation of the value capture is

computed, for every player, by weighting each outcome in the range by the relative proportion

of allocations that are solutions of the conditional game which assign that outcome to the

focal player. We label this expectation term as objective because the expectation term

is computed by setting probabilities as relative frequencies of value capture. This way,

the difference between the objective expected value capture and the generalized expected

appropriation of each player uniquely determines the weights placed on the extremes, which

represent the subjective distortion of appropriation chances for the player. This feature of our

modeling solution allows to therefore interpret the weights assigned to the extremes values

of the interval of value capture as overconfidence indices.

Leaving aside the above behavioral distinction, the consideration of an expected allocation

to each player, computed by taking into account his chances of value capture within the

coalition, allows to take into account richer considerations on the structure of the competition

in the outcomes of the game. In particular, a variation in the number of value capturing

players in a coalition will induce a variation in the chances of appropriation of value of the

players in that coalition. This will imply that, coherently with the intuition, a player may

not be indifferent between two structures of competition, even when they induce the same

interval of value capture for that player.

Given that expected value based evaluation criteria are especially compelling when so-

lutions are set valued, in what follows we will review some set-valued solution concepts and

the strategic assumptions underlying them. Then we will move on to the more operational

side of computing these expectations and observe properties and implications of the use of

these quantities.
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5.1 Set Valued Solutions for Stable Coalitions: from the Core to

the Weber Set

The core of a game holds a special status within the theory of cooperative game due to its

strong intuitive meaning: it is the set of allocations that no coalition can improve upon. In

other words, it is the set of outcomes such that no player has incentives to leave the coalition.

Yet the use of the core has been often criticized in strategic management. The main critiques

to the use of the core boil down to two arguments: on the one hand, the core may not exist,

frustrating analysis beyond this finding, whereas, on the other hand, when it exists, it may

be too big, suggesting an uncomfortable indeterminacy. The latter point is tackled in this

paper by considering a natural point-selection within the set, as we will investigate at depth

in the next subsection.

The possible non-existence of the core has been tackled by strategy scholars by suggesting

the use of alternative solution concepts such as the nucleolus and the Shapley value (Ross,

2018). However, it must be remarked that these solutions have profoundly different inter-

pretations in terms of strategic behaviour with respect to the core. The lack of existence of

the core is per se signaling the impossibility for stability of coalitions to occur under given

circumstances. Following the value added principle, a natural solution concept is given by

the reasonable set, that is the set of all pre-imputations that give no player more than the

largest amount that he can contribute to the coalition (Milnor, 1952).

If one is to maintain the stability of coalitions as a northern light in the quest for a good

candidate solution concept, then it is possible to resort to alternative set-valued solution

concepts that are closer in spirit to the core. Let us preliminary consider the concept of the

excess of a coalition S at allocation π as the gain to the coalition S if its members depart

from an agreement that yields π in order to form their own coalition.

Let ε ∈ R, the strong ε-core is the set of efficient payoff vectors that cannot be improved

upon by any coalition if forming a coalition entails a cost of ε. While the strong ε-core is

always non-empty (that is, there always exists an ε ∈ R such that the set is non-empty), the

core corresponds to the case ε = 0.

A related concept is that of least-core, that is defined as the smallest non-empty strong
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ε-core (Maschler et al. 1979). An interesting property of the least core is that, if the core

of a game is not empty, then the least-core is a located within the core, whereas, if it it

is empty, then the least-core may be regarded as revealing the latent position of the core,

by indicating the minimum cost of deviations that must be imposed on players in order to

maintain stability of coalitions.

The stable set (Morgernstern and VonNeumann, 1953) characterizes the nonempty set

K of imputations such that for all πa, ρa ∈ K, no πa dominates ρa and no ρa dominates πa

(internal stability), and for all σa ∈ I(a) \ K there is an imputation πa ∈ K such that πa

dominates σa (external stability).

A concept related to both the stable set and the core is that of subsolution (Roth, 1976).

A subsolution of a game is a nonempty set L of imputations such that its elements are

internally stable; if πa ∈ L and ρa dominates πa, then ρa ∈ Dom(L); and if πa /∈ L∪Dom(L),

then there is an imputation ρa /∈ L ∪Dom(L) such that ρa dominates πa. It is well known

that nonemptiness of the core implies nonemptiness of subsolution sets. In addition, the

intersection of all subsolutions is a subsolution known as the super core. The relation among

the solution concepts is due to the fact that it is always the case that the core satisfies the first

two requirements characterizing subsolutions. The additional requirement for subsolutions

guarantees a stronger stability to the core allocations in that all imputations outside the

core which are also not dominated by the core are dominated by some imputation having

the same property. This implies that, when the core coincides with the super core, the only

stable subset of imputations lies in the super core.

Some forms of stability of the outcome set applies under some standard hypotheses

(super additivity or convexity of the game) also to the set of marginal contribution vectors,

that is the Weber set (Rafels and Tijs, 1997). The use of the Weber set as candidate

solution is especially justifiable when considerations about average marginal contributions

are paramount. Among its properties, it also is well known that, when the core is not-empty,

the Weber set is a super-set of the core.
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Solution Sets under Bounded Cognition

Solution sets, besides resulting from the application of conditions imposed on allocations

of value to players, implicitly incorporate requirements about the players’ knowledge of the

competitive environment. For example, in strategic behavior settings, positing that solution

allocations belong to the core is implicitly equivalent to requesting all players be able to know

or anticipate the value created by all possible sub-coalitions in the competitive arena. While

this requirement, adhering to the classic Economic tradition, represents a useful benchmark,

it may ascribe an unrealistic degree of cognition to players. In particular, it may be the case

that some players are not aware of the value created by some of the possible sub-coalitions

of players in the game. Solution sets that incorporate these requirements for allocations of

value to players will result in super-sets of the core. The analysis hereby developed extends

smoothly also to these cases. Although we do not explore this direction in detail here, we

remark that incorporating epistemic considerations in biform games, both at the cooperative

and non-cooperative stage(s), would represent a meaningful advancement of the present work

(Aumann and Brandenburger, 1995: Battigalli and Siniscalchi, 1999; Menon, 2018).

5.2 Centroids: from the Core-Center to the Shapley value

In this subsection, we will focus on the interpretation and computation of E [χi(I; a)], the

expected value of value capture for player i ∈ I.

Given the observation that we can see the coordinates of the (n− 1)-dimensional simplex

as n random variables, the question of computing E [χi(I; a)] is the same as that of computing

the expected value of the i-th coordinate of the solution set in Rn, which coincides with the

i-th coordinate of its centroid in Rn.14 Operationally, as we will observe next, computing

expected allocations of value to players is particularly immediate when the solution set

reduces to special cases of regular polytopes. In the general case, in order to take into account
14Recall that the expected or mean value of a continuous random vector X with joint PDF fX is the

centroid of the probability density, i.e.

E [X] =

∫ ∞
−∞

xfX(x)dx

In other words, the centroid is the center of gravity of the distribution of X.
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arbitrary bounds to value capture, we must consider the subset of ∆n−1 generated by the

restrictions corresponding to the solution concept selected.15 A general feature of centroids

is the fact that they inherit all properties of the set to which they belong, in addition to

properties of balancedness (or fairness) that descend directly from the definition of centroids.

This makes the centroid of a set-valued solution a good candidate for a point-solution with

given desirable properties.

If we consider the set of all coalitionally rational and efficient allocations, i.e. the core,

then the expected allocation of value to player i corresponds to the i-th coordinate of the

centroid of the core, or core-center, whose properties have been studied in González-Díaz

and Sánchez-Rodríguez (2003a).

Expected allocations: the simplicial case

Let us start our analysis of expected allocations by investigating the case of solution sets

of conditional n-player games that can be represented by simplices in Rn, while we will

address the case of general solution sets next. When the solution set is a simplex, computing

its centroid, whose coordinates correspond to the expected allocation for each player, is

immediate. In fact, in this case, the centroid is found by simply averaging the vertices’

coordinates of the simplex. Formally, let v1, . . . , vm denote the vertices of an (m−1)-simplex,

where each vj, with j = 1, . . . ,m is an m-dimensional vector in Rm. Then, the centroid C is

C =
1

m

m∑
j=1

vj

The next example illustrates the case when each player in the coalition of all players can

appropriate value in the whole range between their reservation value and the total value

created by the coalition. To illustrate our point we will exemplify strategic situation that

make use of the core as solution concept. However, we underline that our considerations apply

to all those cases in which the solution concept shares the relevant geometric properties of

our results. In particular, here our results apply anytime the solution set is a simplex.

15Note that, for any C ⊂ I, the subset of the simplex generated by the restrictions in RC is a convex
polytope, yet not necessarily a simplex.
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Example 3. Let us start by considering the core of a conditional TU 3-players game such

that, for all i, j ∈ I, Wa ({i}) = Wa ({i, j}) = 0 and, for all i ∈ I, avi(I) = Wa (I) = 1. This

set coincides with the standard 2-dimensional simplex ∆2. In this case, we obtain that, for

every player i ∈ I, the interval of value appropriability χ0
i is the interval [0, 1], that is, all

allocations within the simplex ∆2 are possible. As per our standing assumption, we recall

that within the solution set no allocation is objectively more likely than the other. This

translates into the fact that our (probabilistic) solution set here coincides with a uniform

distribution over ∆2. Here, since, by hypothesis, mass is uniformly distributed over the

whole simplex, the expected allocation of value to the players coincides with the centroid of

the triangle in Figure 5.1.

Π1

0

Π2

Π3

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure 5.1: The 2-dimensional standard simplex ∆2

It is immediate to compute that the core-center is E (χi(I; a)) = 1
3
for all i ∈ I. Therefore,

in this simple case, where all players can create no value outside the grand coalition yet, when

coalescing, have the potential of capturing all value created, we have that the expected value

of the appropriability interval for each player is equivalent to a fair distribution of the value

created. �

Expected allocations: the general case

Now we move on to the general case where the solution set can be represented by a convex

subset of a regular simplex in Rn. This situation is by far the most common in application,
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as, even when considering the core as a solution set, this is often neither a singleton, nor a

simplex, if not in very special cases. In this case, the expected value of the allocation vector

πa is still a centroid, but of the constrained region defined by the restrictions implied by the

solution concept on the set of allocations of the conditional game G|a. In particular, for the

core, we remind these restrictions be feasibility, coalitional rationality and efficiency.

Π1

0

Π2

Π3

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

π1 > V ({1})

π2 > V ({2})

π3 > V ({3})

π1 + π2 > V ({1, 2})

π2 + π3 > V ({2, 3})

π1 + π3 > V ({1, 3})

Figure 5.2: A restricted region R (grayed out) in ∆2

Once the constrained region R is identified, we can obtain its centroid by computing the

conditional expected value of the vector coordinates over the constrained region. Formally,

E [Πi|Π ∈ R] =

∫
R
πifΠ(π)dπ∫
R
fΠ(π)dπ

I{∑n
i=1 πi=1}(π)

Geometrically, R is a convex polytope in Rn given by the finite intersection of the half-

spaces generated by the restrictions defined by the solution concept selected, on the pre-

imputation set of the conditional game G|a. The vertices of this convex polytope can be

computed by using the McLean and Anderson (1966) algorithm for calculating the coordi-

nates of the extreme vertices of a constrained region. Hence, the expected allocation vector

for the conditional game G|a can alternatively be computed via geometric methods.16

16For procedural details, see, for example, Kaiser and Morin (1993).
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Example 4. Let us consider a variation of our introductory example of “ecosystem paradox”.

Assume four firms: an operating system firm (OS), an application software firm (A), and

two microprocessor firms (C1 and C2). Value can only be created with the OS, the App and

one of the microprocessor firms. The two chipmakers firms are substitute to each other, but

an additional k of value can be created with C2’s chip on top of the baseline value of 1 that

can be created with C1. The characteristic function is thus:

S v(S)

{OS,App, C1, C2} 1 + k
{OS,App, C1} 1
{OS,App, C2} 1 + k

Any other subset of players 0

Any allocation of value can be written in barycentric coordinates, (πOS, πApp, πC1 , πC2). In

this game, the core has a trapezoid shape with the following extreme points, listed clockwise:

Extreme point πOS πApp πC1 πC2

A 1 0 0 k
B 0 1 0 k
C 0 1 + k 0 0
D 1 + k 0 0 0

Calculating the barycentric coordinates of the centroid of the core (see Appendix B), we

find it corresponds to the following allocation of value:

πOS = πApp =
k2 + 3k + 3

3k + 6
, πC1 = 0, πC2 =

k(3 + k)

3(2 + k)
.

�

This case allows to embed into our analysis the idea that different strategic requirements

on allocations imply different restrictions on the set of feasible solutions of a conditional

game. In particular, being usually defined as intersections of half-spaces, solution sets in

cooperative games tend to maintain the property of being convex polytopes. This permits

our technique be compatible with different solution concepts in cooperative games.
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In particular, as previously discussed, the Weber set represents a reasonable solution

set when focus is put on the totality of the marginal contributions of the players in the

game, especially in situations where order of entrance in the market is ex-ante unknown. An

interesting and well-known property of Weber sets is that its centroid is the Shapley value

(González-Díaz and Sánchez-Rodríguez, 2003b), a solution concept often invoked in value-

based strategy when the core is empty in that this quantity always exists (Ross, 2018). Our

centroid-based approach to the analysis of biform games thus reconciles the use of these two

different solutions concepts. This result further suggests an additional way to easily compute

the centroid of a core, for all those games in which the core and the Weber set coincide, that

is, for the class of convex games (Peters, 2015 : Theorem 18.6). More importantly, this

perspective allows to add a further strategic justification for the use of the Shapley value,

whose characterization is strongly rooted in fairness considerations as opposed to competition

dynamics that are instead dominant in the case of the core, in wide classes of games.

An application: decreasing returns to value added

Our framework further allows to answer questions related to the elasticity of value capture

to the competitive environment. In other words, in applied models of value-based business

strategy, one central question is that of understanding how value appropriation changes as

value creation changes (García-Castro and Aguilera, 2015; Lieberman et al. 2017; 2018). It

is immediate to observe that this type of questions can be effectively answered by studying

the behavior of the expected value capture of players. Along this line, the next result is,

perhaps, the most surprising within the present work. In particular, Proposition 1 shows

that there are decreasing marginal relative returns from value creation and that this property

is invariant to the number of incumbent value capturing players. That is, the relative share

of value added that a player can expect to appropriate is maximal when the value added is

smallest. In applications, this property is of fundamental importance in understanding the

incentive structure of bottleneck players in ecosystems (Chatain and Plaksenkova, 2020).

Proposition 1. Let I = {1, ..., n}, with n ∈ N such that 2 < n < ∞, denote the set of

players with i ∈ I denoting the i-th player and −i denote all players j ∈ I \ {i}, that is all

27



players except the i-th player. Let Πi further denote the value captured by player i and be

such that ai ≤ Πi ≤ bi for all i ∈ I. The set of restriction on players’ values appropriation

is R = ×i∈I [ai, bi] and Π = (Πi)i∈I is the (random) vector of value capture for all players

in I, with generic realization π = (πi)i∈I . Let us assume that a−i = ai = 0, b−i = 1 and

bi ∈ (0, 1). Then, for player i, it holds that

E (Πi|Π ∈ R)

bi
−→ 1

n
as bi −→ 1

and
E (Πi|Π ∈ R)

bi
−→ 1

2
as bi −→ 0

Example 5. Let us consider again Example 4 and focus on returns to added value. We

remind that the expected allocation of value to players is as follows:

πOS = πApp =
k2 + 3k + 3

3k + 6
, πC1 = 0, πC2 =

k(3 + k)

3(2 + k)
.

Clearly, the weaker chipmaker (C1) cannot capture value in any way since its added value

is always zero. If k = 0, it perfectly substitutes for C2, leading both to capture no value.

C2 can at most capture up to its added value, k. When k increases, the total pie increases

accordingly. But how is split, at the margin, this extra value? We see that the added value

of C2 is equal to k. According to Proposition 1, as the added value of C2 increase above

zero, C2 should capture exactly 1
2
of the increase. In this example, the quantity of interest

is the marginal increase in πC2 at k = 0. Accordingly, we find:

dπC2

dk
=
k2 + 4k + 6

3(2 + k)2
, and lim

k→0

dπC2

dk
=

1

2
.

�
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Figure 5.3: Player i ’s returns to value capture as a function of value added

We further remark that the technique used to prove Proposition 1 provides an alternative

way of computing the centroid of a solution set, when the latter can be described as a

difference between two regular simplices.

6 Concluding remarks

We provided an extension of the seminal biform games setup of Brandenburger and Stuart

(2007) that, while maintaining all of its desirable features, such as the absence of constraints

upon the analysis of competition in the coalitional stage, further allows to overcome some of

the limitations of the original biform setup.

We remark that one main innovation introduced in this paper regards the possibility of

adopting a more general representation of preference relations over cooperative-stage payoffs.

Hence, our paper complements the work in value based business strategy that focuses on

verifying the impact of imposing richer assumptions on the relation between players (Bryan

et al, 2019; Chatain and Zemsky, 2011; Ryall and Sorenson, 2007).

By adding considerations based on expected value reasoning, we answer to the often

raised criticism related to the possible indeterminacy of the solution when the core is used
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as solution concept. The use of the centroid of the set-valued solution allows to select

a point-solution that maintains all desirable properties of the chosen set-valued solution

concept, together with additional properties of balancedness. Differently from the use of the

Shapley value as point-solution concept, our proposed evaluation criterion can be justified by

competitive dynamics instead of fairness concerns. Furthermore, as we have observed both

though theory and examples, our solution further addresses issues related with invariance to

the competitive structure of the game, which can arise when the seminal biform game setup

is used.

The criterion we specified to represent preferences over cooperative-stage outcomes can be

seen as a genuine generalization of the one of Brandenburger and Stuart (2007), which arises

as a special case of ours when the core is considered as solution concept and players in their

evaluation only focus on extreme outcomes instead of adding expected value considerations.

This latter criterion, like the one adopted in the seminal biform games’ approach, is still

axiomatically justified by behavioral assumptions on the players’ preferences as it coincides

with a case of the Non-Extreme Outcomes Expected Utility criterion of Webb and Zank

(2011). In addition, the possibility of isolating an objective expectation component from

the evaluation criterion allows a more transparent analysis of confidence considerations,

which represent can be identified as a subjective distortion of appropriation chances on

behalf of the players. However, we remark that both the Hurwicz (1951) criterion, used by

Brandenburger and Stuart (2007), and the Webb and Zank (2011) criterion, on which we

focused here, are both special cases of preferences’ representations and, as such, are both

instances of generalized biform games. Hence, although in the present work we suggest

the use of a specific evaluation criterion for cooperative-stage payoffs that is immediately

backward compatible with the original biform games’ setup, the framework that we outlined

allows for the use of more general evaluation criteria, through the embedding of a general

preference relation within the biform structure. Different behavioral requirements can be

imposed upon the preference relation, leading the way to the analysis of additional behavioral

considerations, such as attitudes towards uncertainty, as advocated for in Gans and Ryall

(2017).

Finally, we remark that our framework does not necessarily prescribe the use of the core
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as a solution concept. This feature allows, on the one hand, to make use of the recent

developments in terms of intervals of value capture that have been studied in the value-

based strategy literature. Relatedly, our approach allows to exogenously impose intervals

of value capture and derive the restrictions on expected allocations that they imply. This

approach can be seen as the converse of the more classical procedure of selecting a solution

concept and obtain the implied intervals of value capture that are compatible with the

requirements on allocations that characterize the chosen solution concept. Both approaches

are compatible with our setup, conditional on maintaining the assumption that allocations

belong to the imputation set of the conditional games. On the other hand, it leads the way

to a structured analysis of the effects of different limits to strategic cognition, which has

been recently advocated for in the competitive strategy literature (Menon, 2018).
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Appendix A: Proof of Proposition 1

Let N be a natural number greater than 2. The (N − 1)-dimensional unit simplex ∆(N−1),

corresponding to the case where aj = 0 and bj = 1 for all j ∈ I has area V 1 =
√
N

(N−1)!
√

2(N−1)

and centroid with coordinates C1 =
(

1
N

)N
i=1

in RN . Instead the polytope corresponding to

the complement in ∆(N−1) of the restriction of ∆(N−1) generated by adding the constraint

1 ≥ bi > 0 is a regular (N − 1)-simplex with side length (1− bi) and thus area

V 2 =
(1− bi)(N−1)

√
N

(N − 1)!
√

2(N−1)

and centroid coordinates

C2
i =

1

N
(1 + (N − 1)bi)

C2
−i =

1

N
(1− bi)

Therefore, the centroid of the restricted region is given by

C∗i =
V 1C1

i − V 2C2
i

V 1 − V 2
=

√
N

(N−1)!
√

2(N−1)

1
N
− (1−bi)(N−1)

√
N

(N−1)!
√

2(N−1)

1
N

(1 + (N − 1)bi)
√
N

(N−1)!
√

2(N−1)
− (1−bi)(N−1)

√
N

(N−1)!
√

2(N−1)

and

C∗−i =
V 1C1

−i − V 2C2
−i

V 1 − V 2
=

√
N

(N−1)!
√

2(N−1)

1
N
− (1−bi)(N−1)

√
N

(N−1)!
√

2(N−1)

1
N

(1− bi)
√
N

(N−1)!
√

2(N−1)
− (1−bi)(N−1)

√
N

(N−1)!
√

2(N−1)

Finally, since C∗i = E (Πi|Π ∈ R), we compute

lim
bi→1

E (Πi|Π ∈ R)

bi
=

1

N

and

lim
bi→0+

E (Πi|Π ∈ R)

bi
=

1

2

�
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Appendix B: Core-center computation for Example 4

Since C1’s value capture is always zero, we work in the 3-dimension simplex defined solely

by the allocations to players OS, App, and C2.

To find the centroid of the trapezoid [ABCD], we first split it in two triangles, [ACB],

and [ADC]. For each triangle, we find its centroid and calculate its signed area (the area has

a positive sign when the summits are listed in an anticlockwise fashion). The centroid of the

trapezoid is the barycenter of the triangles’s centroids, weighted by their area.

OS App

Chip maker C2

Centroid

A B

D C

The first triangle, [ACB], has for centroid (1
3
, 2+k

3
, 2k

3
), calculated as the average of the

barycentric coordinates of its three summits. The second triangle, [ADC], has for centroid

(2+k
3
, 1+k

3
, k

3
).

Areas of triangles in barycentric coordinates are calculated as follows. If the summits

have coordinates Pi(xi, yi, zi), i = 1, 2, 3, then the signed area of triangle [P1, P2, P3], as a

fraction of the simplex’s area, is calculated thanks to the formula:

[P1P2P3] =

∣∣∣∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y1 z3

∣∣∣∣∣∣∣∣∣ .
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Applying this to [ACB] and to [ADC], their respective areas are:

[ACB] =

∣∣∣∣∣∣∣∣∣
1 0 k

0 1 + k 0

0 1 k

∣∣∣∣∣∣∣∣∣ = k + k2, [ADC] =

∣∣∣∣∣∣∣∣∣
1 0 k

1 + k 0 0

0 1 + k 0

∣∣∣∣∣∣∣∣∣ = k + 2k2 + k3.

Giving the weight [ACB]
[ACB]+[ADC]

to the centroid of [ACB], and the weight [ADC]
[ACB]+[ADC]

to

that of [ADC], we find the centroid of the trapezoid as:

(
k2 + 3k + 3

3k + 6
,
k2 + 3k + 3

3k + 6
,
k(3 + k)

3(2 + k)

)
,

which gives the expected value capture of respectively OS, App, and C2.
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